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Abstract This paper investigates the impacts of image
quality level on the prediction accuracy of image quality met-
rics. While many state-of-the-art perceptual image quality
assessment methods have achieved fairly well performances
in terms of the correlation between the quality predictions
and the subjective scores, none of them took into account the
effects of the quality levels of those test images on predic-
tion accuracy of the quality metrics. In this work, inspired by
the mechanism of human perception under high- and low-
quality conditions, we propose a new image quality assess-
ment paradigm based on image quality level classification.
Our investigation on TID2008 and other three publicly avail-
able databases (LIVE, CSIQ and Toyama-MICT) results in
two valuable findings. First, the performances of major well-
known image quality assessment methods are significantly
affected by image quality level. Second, through combining
different quality metrics for different quality levels, superior
performance can be achieved as compared to some of the
best image quality metrics, e.g., SSIM, MS-SSIM, VIF and
VIFP. Experiments and comparative studies are provided to
confirm the effectiveness of the proposed new paradigm by
differentiating quality levels for image quality assessment.
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1 Introduction

Perceptual image quality assessment (IQA) plays an impor-
tant part in many areas of digital image processing, such as the
development and optimization of image compression, stor-
age, transmission and reproduction algorithms. Existing IQA
approaches fall into two categories: subjective assessment
and objective assessment. Although the subjective assess-
ment approach should be the ultimate quality gauge for
images, it is usually time-consuming, expensive and imprac-
tical for real-time image processing systems. Therefore, there
had been an increased interest in developing objective IQA
metrics. According to the availability of reference images
to be compared with during the tests, objective IQA meth-
ods can be further classified into three categories. Most
approaches are known as full-reference methods, assuming
the reference image is completely known. In many practi-
cal applications, however, the reference image is not avail-
able, and a no-reference IQA algorithm is then desirable. The
third type is referred to as reduced-reference IQA algorithm,
which is applied to the situation where the reference image
is only partially available and some extracted features are
made available as side information to help to evaluate the
quality of the distorted image. In this work, we concentrate
on full-reference IQA approach.

The mean-squared error (MSE) and its relative peak
signal-to-noise ratio (PSNR) are still the most widely used
objective quality metrics, both due to their convenience and
due to their clear physical meaning as distortion/fidelity mea-
sures. However, it has been widely recognized that MSE
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Fig. 1 Scatter plots of MOS versus IFC, MSE, MS-SSIM, NQM, PSNR, SNR, SSIM, UQI, VIF, VIPF, VSNR and WSNR, respectively. The (red)
lines are curves fitted with the logistic function, and the (blue) dash lines are 95 % confidence intervals (color figure online)

and PSNR are not well correlated with human judgment of
quality, i.e., the Mean Opinion Score (MOS) [1]. A large
set of the so-called cognitivist methods, inspired by a clas-
sical cognitivist paradigm of psychology [2], have been
proposed thorough the years. Structural SIMilarity (SSIM)
index [3], the most popular cognitivist method, focuses on
structural information substantially. Various other cognitivist
algorithms, such as multi-scale SSIM (MS-SSIM) [4], visual
information fidelity (VIF) [5] and a pixel-based version of
VIF (VIFP) [5], have been proposed later for better quality
prediction.

During the last decade, much effort have been devoted
to incorporating the properties of the human visual system
(HVS) into image quality metrics and many new IQA meth-
ods have been proposed [6–8]. Liu et al. put human beings’
saliency map into PSNR and SSIM metrics by locally weight-
ing the corresponding distorting map, like the combination
strategy in [9]. Thus, to combine PSNR/SSIM and human
beings’ saliency map, the WPSNR/WSSIM [10] is proposed.

Very recently, many researchers in the area of IQA
realized the importance of distortion classification. For
example, the Blind Image Quality Indices (BIQI) [11] is a
two-stage method: Images are first explicitly classified into
different distortion categories using distorted image statistics

(DIS) [12]. And then, the quality of each image is predicted
based on the distortion-specific quality assessment (DSQA).
Another method called the virtual cognitive model (VICOM)
[13] also tries to differentiate images with respect to their
impairment type first to overcome the obstacle of uneven
response to common impairment sources. As a consequence,
the discrimination of distortion types has been becoming a
major new direction for current research of IQA.

Despite the abundant literature on IQA, however, very lit-
tle effort [14] has been devoted to the study of the influence
of image quality level on prediction accuracy of IQA met-
rics. It is noticed in [14] that fixations largely depend on
the amount of distortion (near- and supra-threshold) for spa-
tially localized distortion. Inspired by this valuable testing
result, it has been further testified in our research that the
image quality level can have significant influences on the
performances of quality metrics. Interestingly, we found that
SSIM/MS-SSIM is more accurate for assessing images with
high quality and VIF/VIFP performs better for images with
low quality. These observations can be explained by the fact
that human perception mechanisms are different under dif-
ferent quality conditions, which may be also explained by the
near- and suprathreshold principles like fixations. Based on
those observations, we propose a novel DIfferent Perception
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Fig. 2 Scatter plots of MOS
versus a SSIM with eight
distorted images (non-blue
dots); b VIF with seven distorted
images (non-blue dots) on
TID2008 (color figure online)

Fig. 3 Eight random distorted
images and their monochrome
SSIM maps (on the lower row):
a red ·; b green ·; c black ·; d red
x; e green x; f black x; g red +;
h green + in Fig. 2a (color figure
online)

(DIP) mechanism inspired IQA method, making full use of
strength of SSIM/MS-SSIM and VIF/VIFP. The DIP method
also has two steps: discrimination of the quality level using
initial quality score and prediction of the final quality by
combining quality scores of the component IQA metrics.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some mainstream IQA metrics and ana-
lyzes their performances before presenting human different
perception mechanism to be explored in this paper. Sec-
tion 3 describes our proposed DIP paradigm in detail. In
Sect. 4, experimental results using the four well-known data-
bases, Tampere Image Database 2008 (TID2008) [15], Lab-
oratory for Image and Video Engineering (LIVE) database

Table 1 Consistency degree of distorted images and their SSIM maps

High quality

Image number Fig. 3a–c

Consistent degree Good

Low quality

Image number Fig. 3d, e, g Fig. 3f, h

Consistent degree Poor Bad

[16], Categorical Image Quality (CSIQ) database [17] and
Toyama-MICT database [18], are reported and analyzed.
Finally, conclusion is drawn and future work is given in
Sect. 5.
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Fig. 4 A randomly chosen
reference image and its
corresponding seven distorted
images (also randomly taken):
a reference image; b red ·; c
green ·; d black ·; e red x; f
green x; g black x; h red + in
Fig. 2b (color figure online)

Table 2 Consistency degree of reference and distorted images

High quality

Image number Fig. 4b–d

Consistent degree Bad

Low quality

Image number Fig. 4e Fig. 4f–h

Consistent degree Good Excellent

2 Different perception mechanism

2.1 Performance analysis of mainstream IQA metrics

The analysis in this work is mainly performed on TID2008
[15], the largest IQA database developed for the verification
of full-reference quality metrics. TID2008 contains 25 ref-
erence images and 17 different types of distortions: addi-
tive Gaussian noise, additive noise in color components,
spatially correlated noise, masked noise, high-frequency
noise, impulse noise, quantization noise, Gaussian blur,
image denoising, JPEG compression, JPEG2000 compres-
sion, JPEG transmission errors, JPEG2000 transmission
errors, noneccentricity pattern noise, local blockwise distor-
tions of different intensity, mean shift (intensity shift) and
contrast change.

Twelve mainstream IQA metrics [19]: IFC [20], MSE,
MS-SSIM [4], NQM [21], PSNR, SNR, SSIM [3], UQI [22],
VIF, VIFP, VSNR [23] and WSNR [24], have been tested
using nonlinear regression with a four-parameter logistic
function as suggested by VQEG [25]

q(s) = β1 − β2

1 + exp(−(s − β3)/β4)
+ β2 (1)

with s being the input score and q(s) the mapped score,
and β1 to β4 are free parameters to be determined during
the curve-fitting process. The scatter plots of difference IQA
metrics and regression results are illustrated in Fig. 1.

Two important observations can be made from Fig. 1: (1)
The convergence trend of some IQA metric scores versus
MOS is very unclear, e.g., MSE, NQM, PSNR and WSNR;
(2) several algorithms, such as MS-SSIM, SSIM, VIF, VIFP
and VSNR, have quite convergent results in part of the scatter
plots. And by convergent, we mean high correlation seems to
exist between subjective and objective scores. For example,
in Fig. 1, when VIF value of image is less than about 0.65, the
corresponding dots are very close to the fitted curve of Eq. (1).
In other words, VIF has better performance for images with
low quality. It is also noticed that IFC and VIFP have the
similar property. On the contrary, data points of SSIM and
MS-SSIM versus MOS are quite close to the respective fitted
curves when their values are higher than about 0.9, indicating
better performances on images with high quality.

2.2 Perception mechanism in different duality conditions

Why is there such a distinction between these IQA metrics in
their performances under different quality conditions? Using
SSIM and VIF as examples, we will analyze the perception
mechanism of the HVS under different quality conditions.

SSIM: The basic spatial domain SSIM algorithm [3] is
based on separated comparisons of local luminance, contrast
and structure between a distorted image and its reference
image. The luminance, contrast and structural similarities
between two local image patches extracted from the reference
and distorted images are evaluated as

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
(2)

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
(3)

s(x, y) = σxy + C3

σxσy + C3
(4)

where μx , σx and σxy represent the mean, standard deviation
and cross-correlation evaluations, respectively, and C1 to C3
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Fig. 5 Two smallest partial
correlation of quality metrics.
a SSIM and MS-SSIM in the
high-quality range, b VIF and
VIFP in the low-quality range

Fig. 6 Illustration of two steps of the DIP metric

are small constants. The SSIM_MAP is defined as the product
of the three components,

SSIM_MAP(xi , yi ) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)

(5)

where xi and yi are the image contents at the i th local win-
dow. The SSIM index evaluating the overall image quality is
defined by

SSIM(X, Y ) = 1

L

L∑

i=1

SSIM_MAP(xi , yi ) (6)

where X and Y are the reference and distorted images, respec-
tively. L is the number of local windows in the image.

Admitting the fact that the accuracy of SSIM depends
on the agreement between the distorted image and the com-
puted SSIM_MAP image, eight distorted images were ran-
domly selected from TID2008 and have been illustrated in
Fig. 3. As shown in Fig. 2a, corresponding data points of the
eight images distribute widely on the scatter plots, where
in the range of images with high quality, red, green and
black “·” indicate accurate prediction. The visible distortions
within those images as manifested in the SSIM maps are
highly consistent with human visual perception, as shown in
Fig. 3a–c. However, things are completely different in low-
quality range. On low-quality images shown in Fig. 3d–h
(marked by red “x”, green “x”, black “x”, red “+” and green

“+” in Fig. 2a), SSIM all have low performance in that the
perceptual distortion and the computed SSIM map are poor
correlation.

This variation of performance for SSIM may be explained
from the viewpoint of human psychovisual perception as
follows: SSIM extracts structural information from visual
scenes. Structural information can be extracted easily and
accurately when images are clear enough, i.e., with high
quality. However, for images with low quality, extraction of
the structural information is affected by the type of distor-
tions. For example, Fig. 3d, e, g with distortions of high-
frequency noise and JPEG2000 transmission error helps to
demonstrate that the structural information cannot be effec-
tively computed by SSIM when the qualities of these images
are poor. And JPEG2000 compression distortion exerts lit-
tle influence on structural information even when it corrupts
the images seriously, as illustrated in Fig. 3f, h. Therefore, it
is generally difficult to extract structural information effec-
tively when images are of bad quality. Table 1 tabulates the
consistency between the perceived distortion and their SSIM
maps.

VIF: Based upon the definitions in [5], the VIF is com-
puted as

VIF =
∑

j∈subbands I (
−→
C N , j ;−→

F N , j |s N , j )
∑

j∈subbands I (
−→
C N , j ;−→

E N , j |s N , j )
(7)

where I (
−→
C N , j ;−→

F N , j |s N , j ) is the mutual information
between a distorted image and its reference image, defined
by

I (
−→
C N ;−→

F N |s N ) = 1

2

N∑

i=1

M∑

k=1

log2

(
1 + s2

i λk

σ 2
n

)
(8)

and I (
−→
C N , j ;−→

E N , j |s N , j ) indicates information content of
the reference image, given by

I (
−→
C N ;−→

E N |s N ) = 1

2

N∑

i=1

M∑

k=1

log2

(
1 + g2

i s2
i λk

σ 2
v + σ 2

n

)
(9)
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Fig. 7 Illustration of the
training and testing groups:
a Group 1; b Group 2

Fig. 8 Changes of RMSE values of DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP on TID2008 database

Table 3 The THRA+B values
with different combinations of
A and B on TID2008 database

Group 1 (680 images) Group 2 (1,020 images)
RMSEmin THRA+B RMSEmin THRA+B

A:SSIM B:VIF 0.6637 5.1600 0.6631 5.1300

A:MS-SSIM B:VIF 0.6125 4.9600 0.5941 4.9000

A:SSIM B:VIFP 0.7344 5.0400 0.7071 5.1300

A:MS-SSIM B:VIFP 0.6781 4.6900 0.6260 4.8800

where the specific meanings of some symbols can be found
in [5].

We also randomly selected seven distorted images from
TID2008 with the same reference image as shown in Fig. 4.
Their corresponding data dots scatter widely in Fig. 2b. Note
that the computed information content in the formulation of
VIF is the same since the reference images are the same, so

the prediction accuracy of VIF is fully determined by the
agreement between the perceptual quality and the mutual
information extracted. When the images are of low quality,
as those shown in Fig. 4e–h, the difference between the ref-
erence and distorted images is obvious and the mutual infor-
mation can be easily estimated, see points marked by red “x”,
green “x”, black “x” and red “+” in Fig. 2b. However, in the
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Fig. 9 Changes of RMSE values of DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP on LIVE database

Fig. 10 Changes of RMSE values of DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP on CSIQ database

Fig. 11 Changes of RMSE values of DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP on Toyama-MICT database

region of high quality, as marked by red, green and black “·”
in Fig. 2b, the HVS hardly perceives any difference between
the reference and distorted images, i.e., their corresponding
mutual information seldom exists, as shown in Fig. 4b–d.
Consequently, the inaccuracy of the mutual information esti-
mation leads to distinct departure between the objective and
subjective quality scores.

The behavior of VIF can also be reasoned from the per-
spective of human vision: VIF quantifies information con-
tent and mutual information for image quality assessment.
For images with low quality, both mutual information and
information content are easy to capture for VIF. However,
for images with high quality, VIF tends to fail since there
can be very little difference between mutual information and
information content. The consistency degree of distorted and
reference images is presented in Table 2.

In summary, for image with high quality, i.e., details in the
image can be clearly identified, the HVS extracts structure
information as predicted by the generic IQA framework [3],
where SSIM can be computed faithfully from the original
and distorted images. However, for images with low qual-
ity, where objects or scenes in the image cannot be reliably

represented, the perceptual quality can be approximated by
the uncertainty of the unfaithful part of the scene, according
to the free energy principle in [26]. Under the situation of low
image quality, VIF establishes a link between the uncertain
parts in the distorted image and their corresponding parts in
the reference image by measuring the mutual information.
And as a consequence, SSIM and VIF perform well in high
and low image quality range, respectively. Thus, it would be
natural to combine the merits of SSIM and VIF type of meth-
ods toward better IQA results, which is the topic of the next
section.

3 Image quality assessment by differentiating quality
levels

Though the idea of combining the strength of the two types
of algorithms looks quite attractive, we are still facing two
major difficulties: (1) which IQA metrics to use and (2) how
to combine the metrics. To solve the first problem, we pro-
vide more empirical studies on the partial correlation between
each IQA algorithms and the subjective scores. And by
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Table 4 The THRA+B values
with different combinations of
A and B on LIVE database

Group 1 (379 images) Group 2 (400 images)
RMSEmin THRA+B RMSEmin THRA+B

A:SSIM B:VIF 7.4884 41.000 7.6054 36.000

A:MS-SSIM B:VIF 7.6088 39.000 7.7499 30.000

A:SSIM B:VIFP 7.2386 23.000 7.7618 37.000

A:MS-SSIM B:VIFP 7.3074 23.000 7.8976 34.000

Table 5 The THRA+B values
with different combinations of
A and B on CSIQ database

Group 1 (461 images) Group 2 (405 images)
RMSEmin THRA+B RMSEmin THRA+B

A:SSIM B:VIF 0.0924 0.2850 0.1006 0.3250

A:MS-SSIM B:VIF 0.0847 0.5100 0.0854 0.5950

A:SSIM B:VIFP 0.0897 0.3350 0.0922 0.3700

A:MS-SSIM B:VIFP 0.0838 0.4100 0.0834 0.3850

Table 6 The THRA+B values
with different combinations of
A and B on Toyama-MICT
database

Group 1 (72 images) Group 2 (96 images)
RMSEmin THRA+B RMSEmin THRA+B

A:SSIM B:VIF 0.5027 3.8550 0.4881 3.8150

A:MS-SSIM B:VIF 0.5016 3.7800 0.4790 3.7300

A:SSIM B:VIFP 0.5590 2.1800 0.5390 3.1650

A:MS-SSIM B:VIFP 0.5715 2.1600 0.5295 3.2000

partial, we mean that only images within a specific quality
range are used. At first, we sort the quality scores of every
IQA metric according to MOS values from low to high, or
vice versa, i.e., q(s1), . . . , q(sK ). K is the total number of
images. Then, the root mean-squared error (RMSE) of the

nonlinear regression being used as a partial correlation mea-
sure is given by

RMSE =
√√√√ 1

T

T∑

i=1

(MOSi − q(si ))2 (10)

Table 7 The final chosen values
of THRA+B on four databases THRA+B TID2008 LIVE CSIQ Toyama-MICT

A:SSIM B:VIF 5.1450 38.500 0.3050 3.8350

A:MS-SSIM B:VIF 4.9300 34.500 0.5525 3.7550

A:SSIM B:VIFP 5.0850 30.000 0.3525 2.6725

A:MS-SSIM B:VIFP 4.7850 28.500 0.3975 2.6800

Fig. 12 Scatter plots of MOS versus DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP (after nonlinear regression) on TID2008
database
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Table 8 Five groups of PLCC, SRCC, KRCC, AAE and RMSE val-
ues (after nonlinear regression) of IFC, MSE, MS-SSIM, NQM, PSNR,
SNR, SSIM, UQI, VIF, VIFP, VSNR, WSNR, IW-SSIM, DIPSSIM+VIF,

DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP on TID2008,
LIVE, CSIQ and Toyama-MICT databases

Metrics PLCC SRCC KRCC AAE RMSE

TID2008 (1,700 images) [15]

IFC [20] 0.7170 0.5690 0.4256 0.7612 0.9355

MSE 0.5689 0.5531 0.4027 0.8395 1.1036

MS-SSIM [4] 0.8404 0.8542 0.6568 0.5659 0.7272

NQM [21] 0.6096 0.6236 0.4600 0.7796 1.0637

PSNR 0.5643 0.5531 0.4027 0.8467 1.1079

SNR 0.5288 0.5235 0.3744 0.8768 1.1389

SSIM [3] 0.7715 0.7749 0.5768 0.6588 0.8537

UQI [22] 0.6632 0.5851 0.4255 0.8141 1.0043

VIF [5] 0.8051 0.7491 0.5861 0.6069 0.7960

VIFP [5] 0.7481 0.6539 0.4945 0.7202 0.8904

VSNR [23] 0.6817 0.7045 0.5340 0.6904 0.9813

WSNR [24] 0.5383 0.4877 0.3930 0.8054 1.1309

IW-SSIM [27] 0.8488 0.8559 0.6636 0.5543 0.7095

DIPSSIM+VIF 0.8593 0.8182 0.6324 0.5219 0.6649

DIPMS-SSIM+VIF 0.8878 0.8636 0.6784 0.4721 0.6030

DIPSSIM+VIFP 0.8384 0.7877 0.5950 0.5819 0.7213

DIPSM-SSIM+VIFP 0.8725 0.8562 0.6632 0.5182 0.6509

LIVE database (779 images) [16]

IFC [20] 0.9250 0.9248 0.7561 8.5649 10.389

MSE 0.8584 0.8755 0.6865 11.192 14.026

MS-SSIM [4] 0.9402 0.9511 0.8043 7.4382 9.3122

NQM [21] 0.9128 0.9093 0.7430 8.5183 11.164

PSNR 0.8701 0.8755 0.6865 10.540 13.473

SNR 0.8591 0.8649 0.6738 10.933 13.991

SSIM [3] 0.9383 0.9478 0.7961 7.5251 9.4508

UQI [22] 0.8984 0.8941 0.7100 9.4233 12.006

VIF [5] 0.9594 0.9633 0.8273 6.2323 7.7102

VIFP [5] 0.9594 0.9618 0.8249 6.1186 7.7143

VSNR [23] 0.9228 0.9271 0.7610 8.0616 10.531

WSNR [24] 0.9145 0.9159 0.7502 8.1651 11.059

IW-SSIM [27] 0.9425 0.9567 0.8175 7.4405 9.1317

DIPSSIM+VIF 0.9601 0.9647 0.8305 6.2206 7.6472

DIPMS-SSIM+VIF 0.9598 0.9632 0.8272 6.3007 7.7233

DIPSSIM+VIFP 0.9600 0.9633 0.8283 6.0782 7.6578

DIPSM-SSIM+VIFP 0.9594 0.9626 0.8260 6.1186 7.7143

CSIQ database (866 images) [17]

IFC [20] 0.8358 0.7671 0.5897 0.1130 0.1441

MSE 0.8030 0.8058 0.6084 0.1175 0.1565

MS-SSIM [4] 0.8979 0.9133 0.7393 0.0875 0.1156

NQM [21] 0.7422 0.7412 0.5653 0.1334 0.1759

PSNR 0.7998 0.8058 0.6084 0.1195 0.1576

SNR 0.7821 0.7995 0.6004 0.1255 0.1636

SSIM [3] 0.8594 0.8756 0.6907 0.1008 0.1342

UQI [22] 0.8294 0.8098 0.6188 0.1124 0.1467
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Table 8 continued

VIF [5] 0.9253 0.9195 0.7537 0.0753 0.0996

VIFP [5] 0.9043 0.8807 0.6969 0.0909 0.1121

VSNR [23] 0.8005 0.8109 0.6248 0.1161 0.1573

WSNR [24] 0.7703 0.7730 0.5989 0.1218 0.1674

IW-SSIM [27] 0.9025 0.9213 0.7529 0.0867 0.1131

DIPSSIM+VIF 0.9300 0.9257 0.7630 0.0735 0.0970

DIPMS-SSIM+VIF 0.9358 0.9344 0.7763 0.0704 0.0933

DIPSSIM+VIFP 0.9388 0.9348 0.7729 0.0714 0.0915

DIPMS-SSIM+VIFP 0.9491 0.9474 0.7937 0.0652 0.0844

Toyama-MICT database (168 images) [18]

IFC [20] 0.8403 0.8354 0.6370 0.5371 0.6784

MSE 0.4421 0.4433 0.3644 0.9794 1.1225

MS-SSIM [4] 0.8920 0.8874 0.7029 0.4368 0.5657

NQM [21] 0.8892 0.8871 0.7049 0.4405 0.5726

PSNR 0.6355 0.6132 0.4443 0.7832 0.9662

SNR 0.5963 0.5725 0.4131 0.8330 1.0045

SSIM [3] 0.8877 0.8794 0.6939 0.4451 0.5762

UQI [22] 0.7164 0.7028 0.5227 0.6961 0.8731

VIF [5] 0.9136 0.9077 0.7315 0.4033 0.5087

VIFP [5] 0.8471 0.8479 0.6587 0.4969 0.6649

VSNR [23] 0.8705 0.8608 0.6745 0.4653 0.6160

WSNR [24] 0.7990 0.7988 0.5988 0.6040 0.7525

IW-SSIM [27] 0.9243 0.9202 0.7537 0.3696 0.4775

DIPSSIM+VIF 0.9214 0.9155 0.7422 0.3895 0.4975

DIPMS-SSIM+VIF 0.9214 0.9151 0.7416 0.3894 0.4974

DIPSSIM+VIFP 0.8974 0.8887 0.7068 0.4269 0.5613

DIPMS-SSIM+VIFP 0.9011 0.8970 0.7165 0.4200 0.5522

where MOSi and si are the MOS value and quality score
of i th test image. T indicates the number of test images.
SSIM/MS-SSIM and VIF/VIFP were selected as candidates,
due to the fact that they have the two smallest RMSE values
for a wide range of k, as shown in Fig. 5.

For the integration of the methods shown in Fig. 6, we can
combine two types of IQA metrics under the paradigm of
differentiating quality levels to develop new metric DIPA+B,
i.e., use metric A for assessing images with high quality and
metric B for images with low quality:

DIPA+B =
{

q(sA) if q(sA) ≥ THRA+B

q(sB) otherwise
(11)

where sA and sB indicate the prediction values of the two IQA
methods for testing reference and distorted image pair s, and
THRA+B represents the most reliable partition threshold of
DIPA+B. This threshold THRA+B is calculated by solving the
following optimization problem:

THRA+B = arg min
THR

{RMSE([B(s1, . . . , sk), A(sk+1,

. . . , sK )]|k < THR ≤ k + 1, k ∈ Interger}.
(12)

To find the THRA+B value, we randomly divide all the images
in TID2008 into two groups with respect to various refer-
ence images, as illustrated in Fig. 7. And the two sets are
individually trained by finding the respective THRA+B using
Eq. (12) and then comparing the THRA+B values with each
other.

With respect to various partition thresholds, the changes
of RMSE values of four DIP methods are illustrated in Fig. 8.
The THRA+B values, and their corresponding minimum
RMSE, with different choices of A and B are listed in Table 3.
Due to the fact that THRA+B of each group for every combi-
nation is almost the same, we simply report the average and
set THRSSIM+VIF = 5.1450, THRMS-SSIM+VIF = 4.9300,
THRSSIM+VIFP = 5.0850 and THRMS-SSIM+VIFP = 4.7850
in this paper.
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Table 9 Direct and database size-weighted average results of PLCC, SRCC, KRCC, AAE and RMSE values (after nonlinear regression) in Table 8

Metrics PLCC SRCC KRCC AAE RMSE

Direct average

IFC [20] 0.8295 0.7741 0.6021 2.4941 3.0368

MSE 0.6681 0.6694 0.5155 3.2821 4.1022

MS-SSIM [4] 0.8926 0.9015 0.7258 2.1321 2.6802

NQM [21] 0.7885 0.7903 0.6183 2.4680 3.2441

PSNR 0.7174 0.7119 0.5355 3.0724 3.9262

SNR 0.6916 0.6901 0.5154 3.1921 4.0745

SSIM [3] 0.8642 0.8694 0.6894 2.1825 2.7537

UQI [22] 0.7769 0.7480 0.5693 2.7615 3.5075

VIF [5] 0.9009 0.8849 0.7247 1.8295 2.2786

VIFP [5] 0.8647 0.8361 0.6688 1.8567 2.3454

VSNR [23] 0.8189 0.8258 0.6486 2.3334 3.0714

WSNR [24] 0.7555 0.7439 0.5852 2.4241 3.2775

IW-SSIM [27] 0.9045 0.9135 0.7469 2.1128 2.6080

DIPSSIM+VIF 0.9177 0.9059 0.7417 1.8014 2.2267

DIPMS-SSIM+VIF 0.9260 0.9191 0.7559 1.8082 2.2293

DIPSSIM+VIFP 0.9087 0.8932 0.7251 1.7896 2.2580

DIPMS-SSIM+VIFP 0.9205 0.9156 0.7496 1.7805 2.2505

Database size-weighted average

IFC [20] 0.7983 0.7095 0.5495 2.3211 2.8244

MSE 0.6847 0.6816 0.5145 2.9639 3.7365

MS-SSIM [4] 0.8792 0.8918 0.7120 1.9657 2.4724

NQM [21] 0.7229 0.7285 0.5604 2.3201 3.0611

PSNR 0.6936 0.6898 0.5183 2.8139 3.6088

SNR 0.6677 0.6696 0.4984 2.9194 3.7420

SSIM [3] 0.8357 0.8431 0.6591 2.0336 2.5695

UQI [22] 0.7589 0.7146 0.5409 2.5445 3.2262

VIF [5] 0.8741 0.8462 0.6879 1.7135 2.1438

VIFP [5] 0.8382 0.7874 0.6255 1.7515 2.2009

VSNR [23] 0.7735 0.7876 0.6134 2.1726 2.8783

WSNR [24] 0.6914 0.6679 0.5328 2.2592 3.0768

IW-SSIM [27] 0.8864 0.8974 0.7240 1.9572 2.4190

DIPSSIM+VIF 0.9021 0.8817 0.7135 1.6687 2.0652

DIPMS-SSIM+VIF 0.9170 0.9056 0.7386 1.6616 2.0512

DIPSSIM+VIFP 0.8929 0.8673 0.6953 1.6674 2.0965

DIPMS-SSIM+VIFP 0.9120 0.9040 0.7338 1.6437 2.0728

Fig. 13 Scatter plots of DMOS versus DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP (after nonlinear regression) on LIVE
database
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Fig. 14 Scatter plots of DMOS versus DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP (after nonlinear regression) on CSIQ
database

Fig. 15 Scatter plots of MOS versus DIPSSIM+VIF, DIPMS-SSIM+VIF, DIPSSIM+VIFP and DIPMS-SSIM+VIFP (after nonlinear regression) on Toyama-
MICT database

Fig. 16 Scatter plots of MOS/DMOS versus IW-SSIM (after nonlinear regression) on the four databases

For the other three databases (LIVE, CSIQ and Toyama-
MICT), the changes of RMSE values of DIP algorithms
with respect to various partition thresholds are illustrated in
Figs. 9, 10, and 11. Similar approaches were applied to find
the reliable THRA+B values for all the four combinations, as
tabulated in Tables 4, 5 and 6. Table 7 presents the average
THRA+B as the final chosen threshold values.

4 Experimental results

Figure 12 presents the scatter plots between the MOS and our
proposed approaches, on the test database of TID2008. As
shown in Fig. 1, these four DIP-based IQA methods have
clearly achieved inspiring improvements. Moreover, five
commonly used performance metrics as suggested by VQEG
[25] are employed to further evaluate the competitive DIP-
based IQA metrics and the thirteen mainstream methods,
namely IFC, MSE, MS-SSIM, NQM, PSNR, SNR, SSIM,

UQI, VIF, VIFP, VSNR, WSNR and recently proposed IW-
SSIM [27], on TID2008, LIVE, CSIQ and Toyama-MICT
databases. The first metric is the Pearson linear correlation
coefficient (PLCC) between MOS and the objective scores
after nonlinear regression. It can be defined by

PLCC =
∑

i (qi − q̄) ∗ (oi − ō)
√∑

i (qi − q̄)2 ∗ (oi − ō)2
(13)

where oi is the subjective score of the i th image. The sec-
ond metric is the Spearman rank-order correlation coefficient
(SRCC), computed as

SRCC = 1 − 6
∑N

i=1 d2
i

N (N 2 − 1)
(14)

where di is the difference between the i th image’s ranks in
subjective and objective evaluations. It is a nonparametric
rank-based correlation metric, independent of any monotonic
nonlinear mapping between subjective and objective scores.
The third metric, Kendall’s rank-order correlation coefficient
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(KRCC), is another nonparametric rank correlation metric
given by

KRCC = Nc − Nd
1
2 N (N − 1)

(15)

where Nc and Nd are the numbers of concordant and dis-
cordant pairs in the data set, respectively. Average absolute
prediction error (AAE) is the fourth metric, which is calcu-
lated using the converted objective scores after the nonlinear
mapping of Eq. (1):

AAE = 1

N

∑
|qi − oi | (16)

and the final metric RMSE has been already described in Eq.
(10) by letting T equal to K .

All the five groups of corresponding PLCC, SRCC,
KRCC, AAE and RMSE values, as well as their average
results inspired by [27] over these four databases, are illus-
trated in Tables 8 and 9 (THEA+B values of other three data-
bases are also individually trained by the same method for
TID2008). The two groups of average results are direct aver-
age and average based on their size (1700 for TID2008 [15],
799 for LIVE [16], 866 for CSIQ [17] and 168 for Toyama-
MICT [18]). Besides, the scatter plots of MOS/DMOS versus
the proposed approaches on the other three databases as well
as MOS/DMOS versus IW-SSIM on all the four databases
are displayed in Figs. 13, 14, 15 and 16. It can be seen that
our proposed four DIP-based IQA methods basically have
led to better results than the thirteen mainstream metrics on
these four popular image quality databases. Despite this, it
still can be noticed that the performance gain of the proposed
four algorithms are also different. DIPMS-SSIM+VIF method
often has the largest gain. This can be explained by the fact
that MS-SSIM and VIF are computed over multiple scales of
the reference and distorted image patches by subband decom-
position, which is closer to the behavior of the HVS in the
real world.

Although DIPMS-SSIM+VIF approach generally has the best
performance, it is easy to imagine that the higher accuracy
comes with the cost of higher computational complexity. As
shown in Fig. 6, metric A (SSIM/MS-SSIM) is firstly com-
puted and then used to judge whether metric B (VIF/VIFP)
is needed. According to our statistics using Figs. 12, 13, 14
and 15, the probability of invoking metric B is around 0.6, so
the overall computational complexity of the proposed DIP
method is about the sum of complexity of metric A plus
0.6 times of the complexity of metric B. It is well-known
that SSIM has very low computational complexity, and its
multiple version of MS-SSIM is with about 3–4 times more
complex than SSIM. Meanwhile, VIF is based on wavelet
decomposition and therefore has much higher complexity
than SSIM. Accordingly, we suggest using DIPMS-SSIM+VIF

only when the computational power allows. Under resource

deficient conditions, other simpler forms of DIP type of met-
ric can be employed.

Besides, it can also be easily observed from Figs. 8, 9, 10
and 11 that the thresholds do not have the same values for dif-
ferent DIP measure across the image databases. We believe
these phenomena can be explained by the following reasons.
According to the survey in [28], external factors should be
taken into account in the research of image quality assess-
ment, such as ambient illumination, image size and viewing
distance. Consequently, the threshold values of DIP method
for the same image database are generally quite close, while
they can be quite different across databases with distinctive
external factors.

Finally, it is worth emphasizing that our DIP inspired IQA
paradigm, which may be explained by the fact that near- and
suprathreshold principles, is not purely a new full-reference
image quality metric, but a model for IQA, including full-
reference, reduced-reference and no-reference conditions. In
other words, through the application of various combinations
of metrics A and B in Eq. (11), we can achieve different DIP
methods. And moreover, with the development of researches
in IQA, new quality approaches may be processed by DIP
model to obtain much higher prediction accuracy. Again,
despite the DIP-based full-reference image quality paradigm
in this paper, our model also can have an immensely valu-
able application for no-reference or reduced-reference image
quality assessment.

5 Conclusion

In this paper, we propose a new IQA paradigm through com-
bining SSIM/MS-SSIM and VIF/VIFP under different image
quality conditions. This work is inspired by two valuable
findings of the performances of existing IQA metrics. First,
the performances of major well-known IQA methods are con-
siderably affected by the image quality level. Second, com-
bining two metrics based on image quality level classification
can lead to consistent performance improvement of the IQA
metrics. Due to the fact that the significant THRA+B is trained
by two independent groups, our method can perform well in
the practical application, but it may have a little higher com-
putational complexity because of the possible computation
on both metrics A and B. Experimental results verify that
the performances of the proposed methods are generally bet-
ter than SSIM, MS-SSIM, VIF, VIFP and other mainstream
IQA algorithms. Future work will be devoted to the studies of
the relationship between images in various databases and the
corresponding threshold values, and the influence of exter-
nal factors during the subjective experiments on prediction
accuracy of image quality metrics.
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